6
Views
7
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Characterization of Yeast Vps33p, a Protein Required for Vacuolar Protein Sorting and Vacuole Biogenesis

, , &
Pages 4638-4649 | Received 27 Mar 1990, Accepted 15 Jun 1990, Published online: 31 Mar 2023
 

Abstract

vps33 mutants missort and secrete multiple vacuolar hydrolases and exhibit extreme defects in vacuolar morphology. Toward a molecular understanding of the role of the VPS33 gene in vacuole biogenesis, we have cloned this gene from a yeast genomic library by complementation of a temperature-sensitive vps33 mutation. Gene disruption demonstrated that VPS33 was not essential but was required for growth at high temperatures. At the permissive temperature, vps33 null mutants exhibited defects in vacuolar protein localization and vacuole morphology similar to those seen in most of the original mutant alleles. Sequence analysis revealed a putative open reading frame sufficient to encode a protein of 691 amino acids. Hydropathy analysis indicated that the deduced product of the VPS33 gene is generally hydrophilic, contains no obvious signal sequence or transmembrane domains, and is therefore unlikely to enter the secretory pathway. Polyclonal antisera raised against TrpE-Vps33 fusion proteins recognized a protein in yeast cells of the expected molecular weight, ~75,000. In cell fractionation studies, Vps33p behaved as a cytosolic protein. The predicted VPS33 gene product possessed sequence similarity with a number of ATPases and ATP-binding proteins specifically in their ATP-binding domains. One vps33 temperature-sensitive mutant contained a missense mutation near this region of sequence similarity; the mutation resulted in a Leu-646 → Pro substitution in Vps33p. This temperature-sensitive mutant strain contained normal vacuoles at the permissive temperature but lacked vacuoles specifically in the bud at the nonpermissive temperature. Our data suggest that Vps33p acts in the cytoplasm to facilitate Golgi-to-vacuole protein delivery. We propose that as a consequence of the vps33 protein-sorting defects, abnormalities in vacuolar morphology and vacuole assembly result.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.