12
Views
5
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Inducibility of the DNA Repair Gene Encoding O6-Methylguanine- DNA Methyltransferase in Mammalian Cells by DNA-Damaging Treatments

, , &
Pages 4660-4668 | Received 08 Apr 1991, Accepted 29 Jun 1991, Published online: 31 Mar 2023
 

Abstract

The inducibility of the mammalian O6-methylguanine-DNA methyltransferase (MGMT) gene encoding the MGMT protein (EC 2.1.1.63) responsible for removal of the procarcinogenic and promutagenic lesion O6-alkylguanine from DNA was examined by an analysis of transcription of the MGMT gene following exposure of repair-competent (Mex+) and repair-deficient (Mex-) cells to N-methyl-N′-nitro-N-nitrosoguani- dine (MNNG). While human and rodent Mex- cells (CHO-9, V79, HeLa MR) showed no detectable MGMT mRNA despite the presence of the gene in their genome, the amount of it in several Mex+ lines (NIH 3T3, HeLa S3, HepG2) paralleled their MGMT activity. However, none of these cell lines showed an increase in the MGMT mRNA level after treatment with various concentrations of MNNG. In contrast, MNNG-treated rat hepatoma cells, H4IIE and FTO-2B, both Mex+, had three- to fivefold more MGMT mRNA than the corresponding untreated controls as measured 12 to 72 h after alkylation. N-Methyl-N-nitrosourea, methyl methanesulfonate, N-hydroxyethyl-N-chloroethylnitrosourea, UV light, and X rays caused a similar accumulation of MGMT mRNA in rat hepatoma cells. Studies with inhibitors of RNA and protein synthesis indicate that the induced increase in the amount of MGMT mRNA was due to enhanced transcription of the gene. Furthermore, they revealed the turnover of the MGMT mRNA to be relatively low (half-life, >7 h). Mutagen-induced increase of transcription of MGMT mRNA in H4IIE cells was accompanied by elevation of MGMT repair activity and resulted in reduction of mutation frequency after a challenge dose of MNNG. Although induction of MGMT mRNA transcription has been observed in two rodent hepatoma cell lines so far, this appears to be the first demonstration of inducibility of a mammalian gene encoding a clearly defined DNA repair function. The transcriptional activation of the MGMT gene protects cells from the mutagenic effects of methylating agents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.