6
Views
27
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

C-Terminal Truncation of RAP1 Results in the Deregulation of Telomere Size, Stability, and Function in Saccharomyces cerevisiae

, &
Pages 5159-5173 | Received 22 May 1992, Accepted 12 Aug 1992, Published online: 31 Mar 2023
 

Abstract

The Saccharomyces cerevisiae DNA-binding protein RAP1 is capable of binding in vitro to sequences from a wide variety of genomic loci, including upstream activating sequence elements, the HML and HMR silencer regions, and the poly(G1_3T) tracts of telomeres. Recent biochemical and genetic studies have suggested that RAP1 physically and functionally interacts with the yeast telomere. To further investigate the role of RAP1 at the telomere, we have identified and characterized three intragenic suppressors of a temperature-sensitive allele of RAP1, rapl-5. These telomere deficiency (rap1t) alleles confer several novel phenotypes. First, telomere tract size elongates to up to 4 kb greater than sizes of wild-type or rapl-5 telomeres. Second, telomeres are highly unstable and are subject to rapid, but reversible, deletion of part or all of the increase in telomeric tract length. Telomeric deletion does not require the RAD52 or RADI gene product. Third, chromosome loss and nondisjunction rates are elevated 15- to 30-fold above wild-type levels. Sequencing analysis has shown that each rap1t allele contains a nonsense mutation within a discrete region between amino acids 663 and 684. Mobility shift and Western immunoblot analyses indicate that each allele produces a truncated RAP1 protein, lacking the C-terminal 144 to 165 amino acids but capable of efficient DNA binding. These data suggest that RAP1 is a central regulator of both telomere and chromosome stability and define a C-terminal domain that, while dispensable for viability, is required for these telomeric functions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.