7
Views
28
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Sequence-Specific Transcriptional Activation by Myc and Repression by Max

, &
Pages 383-390 | Received 08 Jul 1992, Accepted 09 Oct 1992, Published online: 01 Apr 2023
 

Abstract

The c-Myc oncoprotein, which is required for cellular proliferation, resembles in its structure a growing number of transcription factors. However, the mechanism of its action in vivo is not yet clear. The discovery of the specific cognate DNA-binding site for Myc and its specific heterodimerization partner, Max, enabled the use of direct experiments to elucidate how Myc functions in vivo and how this function is modulated by Max. Here we demonstrate that exogenously expressed Myc is capable of activating transcription in vivo through its specific DNA-binding site. Moreover, transcriptional activation by Myc is dependent on the basic region, the integrity of the helix-loop-helix and leucine zipper dimerization motifs located in the carboxy-terminal portion of the protein, and the regions in the amino terminus conserved among Myc family proteins. In contrast to Myc, exogenously expressed Max elicited transcriptional repression and blocked transcriptional activation by Myc through the same DNA-binding site. Our results suggest a functional antagonism between Myc and Max which is mediated by their relative levels in the cells. A model for the activity of Myc and Max in vivo is presented.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.