7
Views
6
CrossRef citations to date
0
Altmetric
Cell Growth and Development

A Nuclear Tyrosine Phosphatase Downregulates Interferon-Induced Gene Expression

, , &
Pages 7515-7521 | Received 19 Jul 1993, Accepted 03 Sep 1993, Published online: 31 Mar 2023
 

Abstract

Alpha and gamma interferons rapidly induce several early response genes in primary human diploid fibroblasts. The transcription rates of these genes are maximal after 1 h of interferon treatment and return to basal levels within 8 h. Three different interferon-activated DNA-binding complexes (ISGF3, GAF, and FcRFγ) that are responsible for transcriptional activation of cellular genes have been characterized. Assembly of these complexes requires tyrosine phosphorylation of one or more of the protein components. In this report, we demonstrate that a nuclear tyrosine phosphatase is responsible for the deactivation of these interferon-regulated transcription factors and the subsequent transcriptional downregulation of the corresponding genes. Furthermore, tyrosine phosphorylation is required for nuclear localization of the 91-kDa protein that is part of all three interferon-induced transcription complexes. These results provide the first evidence for a nuclear tyrosine phosphatase activity as a mechanism of transcriptional regulation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.