7
Views
0
CrossRef citations to date
0
Altmetric
Gene Expression

Structure and Expression of the Nuclear Gene Coding for the Chloroplast Ribosomal Protein L21: Developmental Regulation of a Housekeeping Gene by Alternative Promoters

, , , &
Pages 2614-2622 | Received 22 Jun 1992, Accepted 28 Jan 1993, Published online: 31 Mar 2023
 

Abstract

We have cloned and sequenced the nuclear gene of the chloroplast ribosomal protein L21 (rpl21) of Spinacia oleracea. The gene consists of five exons and four introns. All introns are located in the sequence which corresponds to the Escherichia coli-like central core of the protein. L21 mRNA is present in photosynthetic (leaves) and nonphotosynthetic (roots and seeds) plant organs, although large quantitative differences exist. Primer extension and S1 nuclease mapping experiments revealed the existence of two types of transcripts in leaves. The two corresponding start sites were defined as P1 and P2. In roots and seeds, we found only the shorter of the two transcripts (initiated at P2). The nucleotide sequence surrounding P2 resembles promoters for housekeeping and vertebrate r-protein genes. Analysis of several promoter constructions by transient expression confirmed that both transcripts originate from transcription initiation. Results are interpreted to mean that the expression of the rpl21 gene is regulated by alternative promoters. One of the promoters (P2) is constitutive, and the other one (P1) is specifically induced in leaves, i.e., its activation should be related to the transformation of amyloplasts or proplastids to chloroplasts. The gene thus represents the first example of a housekeeping gene which is regulated by the organ-specific usage of alternative promoters. Primer extension analysis and S1 nuclease mapping of another nucleus-encoded chloroplast ribosomal protein gene (rps1) give evidence that the same type of regulation by two-promoter usage might be a more general phenomenon of plant chloroplast-related ribosomal protein genes. Preliminary results indicate that presence of conserved sequences within the rpl21 and rps1 promoter regions which compete for the same DNA binding activities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.