8
Views
18
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Selective DNA Bending by a Variety of bZIP Proteins

&
Pages 5479-5489 | Received 01 Apr 1993, Accepted 09 Jun 1993, Published online: 31 Mar 2023
 

Abstract

We have investigated DNA bending by bZIP family proteins that can bind to the AP-1 site. DNA bending is widespread, although not universal, among members of this family. Different bZIP protein dimers induced distinct DNA bends. The DNA bend angles ranged from virtually 0 to greater than 40 degrees as measured by phasing analysis and were oriented toward both the major and the minor grooves at the center of the AP-1 site. The DNA bends induced by the various heterodimeric complexes suggested that each component of the complex induced an independent DNA bend as previously shown for Fos and Jun. The Fos-related proteins Fra1 and Fra2 bent DNA in the same orientation as Fos but induced smaller DNA bend angles. ATF2 also bent DNA toward the minor groove in heterodimers formed with Fos, Fra2, and Jun. CREB and ATF1, which favor binding to the CRE site, did not induce significant DNA bending. Zta, which is a divergent member of the bZIP family, bent DNA toward the major groove. A variety of DNA structures can therefore be induced at the AP-1 site through combinatorial interactions between different bZIP family proteins. This diversity of DNA structures may contribute to regulatory specificity among the plethora of proteins that can bind to the AP-1 site.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.