2
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Preferential Deadenylation of Hsp70 mRNA Plays a Key Role in Regulating Hsp70 Expression in Drosophila melanogaster

, &
Pages 3646-3659 | Received 30 Dec 1993, Accepted 23 Feb 1994, Published online: 30 Mar 2023
 

Abstract

Following a standard heat shock, ~40% of Hsp70 transcripts in Drosophila melanogaster lack a poly(A) tail. Since heat shock disrupts other aspects of RNA processing, this observation suggested that heat might disrupt polyadenylation as well. We find, however, that as the temperature is increased a larger fraction of Hsp70 RNA is polyadenylated. Poly (A)-deficient Hsp70 RNAs arise not from a failure in polyadenylation but from the rapid and selective removal of poly(A) from previously adenylated transcripts. Poly(A) removal is highly regulated: poly(A) is (i) removed much more rapidly from Hsp 70 RNAs than from Hsp23 RNAs, (ii) removed more rapidly after mild heat shocks than after severe heat shocks, and (iii) removed more rapidly after a severe heat shock if cells have first been conditioned by a mild heat treatment. Poly(A) seems to be removed by simple deadenylation rather than by endonucleolytic cleavage 5′ of the adenylation site. During recovery from heat shock, deadenylation is rapidly followed by degradation. In cells maintained at high temperatures, however, the two processes are uncoupled and Hsp70 RNAs are deadenylated without being degraded. These deadenylated mRNAs are translated with low efficiency. Deadenylation therefore allows Hsp70 synthesis to be repressed even when degradation of the mRNA is blocked. Poly(A) tail shortening appears to play a key role in regulating Hsp70 expression.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.