10
Views
53
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Control of Programmed Cell Death by the Baculovirus Genes p35 and iap

&
Pages 5212-5222 | Received 15 Feb 1994, Accepted 27 Apr 1994, Published online: 30 Mar 2023
 

Abstract

The SF-21 insect cell line undergoes rapid and widespread apoptosis when treated with actinomycin D or when infected with a mutant of the baculovirus Autographa califomica nuclear polyhedrosis virus lacking a p35 gene or a functionally active iap (inhibitor of apoptosis) gene. Here we provide evidence that the basis for the induction of apoptosis by these two different stimuli is the cessation of RNA synthesis. We also show that expression of either p35 or two different functional iap homologs blocks apoptosis independently of other viral genes, indicating that these gene products act directly on the cellular apoptotic pathway. The iap genes encode a C3HC4 (or RING) fìnger motif found in a number of transcriptional regulatory proteins, as well as two additional Cys/His motifs (baculovirus iap repeats). We show that specific amino acids within both the C3HC4 finger and the N-terminal baculovirus iap repeat are critical for antiapoptosis function. Overexpression of either mammalian bcl-2 or adenovirus E1B-19K, genes which block apoptosis when overexpressed in a number of mammalian cells, does not block actinomycin D-induced apoptosis in SF-21 cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.