7
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Multiple 5′-Flanking Regions of the Human α-Skeletal Actin Gene Synergistically Modulate Muscle-Specific Expression

&
Pages 4089-4099 | Received 08 Jun 1987, Accepted 10 Aug 1987, Published online: 31 Mar 2023
 

Abstract

Transfection into myogenic and nonmyogenic cell lines was used to investigate the transcriptional regulation of the human α-skeletal actin gene. We demonstrated that 1,300 base pairs of the 5′-flanking region directed high-level transient expression of the bacterial chloramphenicol acetyltransferase gene in differentiated mouse C2C12 and rat L8 myotubes but not in mouse nonmuscle L.TK- and HuT-12 cells. Unidirectional 5′ deletion analysis and heterologous promoter stimulation experiments demonstrated that at least three transcription-regulating subdomains lie in this 1,300-base-pair region. A proximal cis-acting transcriptional element located between positions -153 and -87 relative to the start of transcription at +1 was both sufficient and necessary for muscle-specific expression and developmental regulation during myogenesis in the two myogenic cell systems. The region 3′ of position -87 interacted with factors present in both myogenic and fibroblastic cells and appeared to define, or to be a major component of, the basal promoter. In C2C12 myotubes, but not in L8 myotubes, a distal sequence domain between positions -1300 and -626 and the proximal sequence domain between positions -153 and -87 each induced transcription about 10-fold and synergistically increased CAT expression 100-fold over levels achieved by the sequences 3′ of position -87. Furthermore, these cis-acting elements independently and synergistically modulated an enhancerless, heterologous simian virus 40 promoter in a tissue-specific manner. DNA fragments which included the proximal domain displayed classical enhancerlike properties. The central region between positions -626 and -153, although required in neither cell line, had a positive, two- to threefold, additive role in augmenting expression in L8 cells but not in C2C12 cells. This suggests that certain elements between positions -1300 and -153 appear to be differentially utilized for maximal expression in different myogenic cells and that the particular combination of domains used is dependent on the availability, in kind or amount, of trans-acting, transcription-modulating factors present in each cell type. Thus, multiple myogenic factors that vary qualitatively and quantitatively may be responsible for the different and complex modulatory programs of actin gene expression observed during in vivo muscle differentiation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.