0
Views
3
CrossRef citations to date
0
Altmetric
Gene Expression

Unusual Levels of Heat Shock Element-Binding Activity in Embryonal Carcinoma Cells

, &
Pages 3888-3896 | Received 27 Feb 1989, Accepted 22 May 1989, Published online: 31 Mar 2023
 

Abstract

In contrast to differentiated somatic cells, mouse embryonal carcinoma (EC) cell lines spontaneously express high levels of major members of the heat shock protein (HSP) family. In addition, some EC cell lines (noninducible) are not able to induce HSP gene transcription and HSP synthesis after a stress. However, after in vitro differentiation, constitutive HSP expression decreases and the differentiated derivatives become able to induce HSP gene transcription after a stress. These cells were tested by gel shift assays for the presence of an activity able to bind the heat shock element (HSE) before and after a stress. Control fibroblasts grown at 37°C did not contain significant levels of HSE-binding activity, but heat shock dramatically increased the level of HSE-binding activity. In contrast to control fibroblasts, all EC cells contained significant levels of HSE-binding activity at 37°C. In the inducible EC cell line F9, as in fibroblasts, heat shock strongly increased the level of HSE-binding activity. In the noninducible EC cells, however, HSE-binding activity markedly decreased upon heat shock. During in vitro differentiation of the noninducible cell line PCC7-S-1009, the constitutive HSE-binding activity found at 37°C disappeared and heat induction of the HSE-binding activity appeared. Therefore, a good correlation exists between the high spontaneous expression of some members of the HSP family and the constitutive level of HSE-binding activity in EC cells at 37°C. Heat induction of HSP gene transcription correlates with a strong increase in HSE-binding activity, whereas a deficiency in heat induction of HSP gene transcription is associated with a loss of HSE-binding activity upon heat shock.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.