72
Views
10
CrossRef citations to date
0
Altmetric
Articles

The gap between the measured and calculated liquid–liquid interfacial tensions derived from contact angles

Pages 167-185 | Published online: 02 Apr 2012
 

Abstract

We present our new findings about the causes of discrepancies between the measured and calculated liquid-liquid interfacial tensions derived from contact angles. The calculated ones are based on either the equation developed by Fowkes or that by van Oss, Chaudhury and Good (VCG), while the measured ones are based on the sessile drop, weight-volume by Jańzuk et al. and the axisymmetric drop shape analysis (ADSA) by Kwok and Neumann. Indeed, there are deviations between the calculated and measured results. For an immiscible liquid-liquid or liquid-solid interface, we prefer to employ Harkins spreading model, which requires the interfacial tension to be constant. However, for the initially immiscible liquid-liquid pairs, we propose an adsorption model, and our model requires the interfacial tension to be varying and the surface tensions of bulk liquids at a distance from the interface to remain unchanged. Thus, the difference between the initial and final interfacial spreading coefficients (Si) equals the equilibrium interfacial film pressure (πi)e. According to our findings, the calculated interfacial tension represents the initial value (γ12)o, which differs from the equilibrium value (γ12)e obtained experimentally after some time delay. This expected gap at a reasonable time frame is chiefly caused by the equilibrium interfacial film pressure between the two liquids. The initial (or calculated) interfacial tension can be positive or negative, while the equilibrium (or measured) one can reach zero. In fact, the former is shown to have more predictive value than the latter. A negative initial interfacial tension is described to favor miscibility or spontaneous emulsification but it tends to revert to zero instantaneously. Thus, a miscible liquid mixture should have zero interfacial tension. In response to recent papers by Kwok et al., we show that the disagreements between the calculated and measured interfacial tensions are definitely not caused by the failure of the VCG approach. Correct interfacial tensions are calculated for liquid pairs containing formamide or dimethyl sulfoxide (DMSO) by using the dispersion components cited in Fowkes et al.'s later publication. With the corrected surface tension components, the equilibrium interfacial film pressures (πi)e's for at least 34 initially immiscible liquid pairs have been calculated. These values are generally lower than the corresponding spreading pressures πe's obtained by others using the Harkins model. Recently, we established a relationship between these two film pressures with the Laplace equation and found a new criterion for miscibility to be (πi)e = πe.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.