36
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Application of lock-in thermography in nondestructive evaluation of adhesively-bonded aluminum joints

Pages 635-654 | Published online: 02 Apr 2012
 

Abstract

A major problem in industrial applications of structural adhesives is the quality assurance of manufactured joints. At present, for lack of a suitable nondestructive technique, production standards for adhesively-bonded aluminum joints are established on the basis of destructive tests and statistical inference. An experimental study was carried out to assess if lock-in thermography (LT) could be used as a tool for nondestructive evaluation of adhesively-bonded aluminum joints. Several samples were fabricated by varying the governing parameters such as nature of aluminum alloy, substrate thickness, surface treatment, adhesive type and bondline thickness. The effects of surface treatments on the loading capability of lap joints were evaluated through both destructive tensile tests and nondestructive evaluation with infrared LT. Tensile tests showed that the joint performance was not affected by the nature of the aluminum alloy but by the substrate thickness, the adhesive type and the bondline thickness. LT was capable of detecting imperfections such as scratches on substrates and foreign inclusions in the adhesive layer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.