54
Views
5
CrossRef citations to date
0
Altmetric
Articles

Time-of-flight SIMS analysis of polypropylene films modified by flame treatments using isotopically labeled methane fuel

&
Pages 795-818 | Published online: 02 Apr 2012
 

Abstract

The surface of polypropylene (PP) film was oxidized by exposure to a flame fueled by isotopically labeled methane (CD4). The isotopic sensitivity of static secondary ion mass spectrometry (SIMS) was then used to gain new insights into the mechanism of flame treatment. SIMS analysis indicated that much of the oxidation of PP occurring in fuel-lean flames is not deuterated, while for PP treated in fuel-rich flames, some of the affixed oxygen is deuterated. These observations imply that O2 is the primary source of affixed surface oxygen in fuel-lean flame treatments, but that OH may be a significant source of affixed oxygen in fuel-rich flame treatments. Hydroxyl radicals are primarily responsible for hydrogen abstraction in fuel-lean flames, while H is the primary active gasphase species in fuel-rich flames. SIMS also detected trace quantities of oxidized nitrogen groups affixed to the flame-treated PP.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.