20
Views
4
CrossRef citations to date
0
Altmetric
Articles

Microstructure, adhesion, and tribological properties of conventional plasma-sprayed coatings on steel substrate

, , , , &
Pages 907-921 | Published online: 02 Apr 2012
 

Abstract

A variety of metallic and oxide coatings were deposited under various conditions on 1020 mild steel substrate by conventional plasma spraying. The coating thickness, microhardness, cohesion and adhesion failure loads, friction coefficient, and abrasive wear resistance were evaluated. The coatings were classified as follows, in order of decreasing microhardness and wear resistance: alumina, chromia, 316 stainless steel, Ni-5% Al, elemental aluminum and aluminum-polyester. Wear resistance increased with increasing microhardness and decreasing friction coefficient. The microhardness and wear resistance of high-velocity oxy-fuel (HVOF) diamond jet (DJ)-sprayed aluminum were found to be superior to those of plasma-sprayed aluminum. Plasma or flame-sprayed metallic coatings adhered well to the substrate. The cohesion, adhesion, microhardness, and wear resistance of alumina coatings exceeded those of equally thick chromia coatings.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.