14
Views
13
CrossRef citations to date
0
Altmetric
Articles

Analysis and design of adhesively bonded tee joints with a single support plus angled reinforcement

, &
Pages 681-724 | Published online: 02 Apr 2012
 

Abstract

In this study, stress and stiffness analyses of adhesively bonded tee joints with a single support plus angled reinforcement were carried out using the finite element method. It was assumed that the adhesive had linear elastic properties. In actual bonded joints, some amount of adhesive, called the spew fillet, accumulated at the free ends of the adhesive layer; therefore, the presence of the adhesive fillet at the adhesive free ends was taken into account. The tee joints were analysed for two boundary conditions: a rigid base and a flexible base. In addition, each boundary condition was analysed for four loading conditions: tensile, compressive, and two side loadings. The stress analysis showed that both side loading conditions resulted in higher stress levels in the joint region in which the vertical plate and supports are bonded to each other, as well as in the adhesive layer in this region for both rigid and flexible base boundary conditions. In adhesively bonded joints, the joint failure is expected to initiate in the adhesive regions subjected to high stress concentrations; therefore, the peak adhesive stresses were evaluated in these critical regions. In the case of the rigid base, the peak adhesive stresses occurred at the corner of the vertical plate, which was bent at right angles, for the tensile and compressive loading conditions, and in the adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for both the left and the right side loading conditions. However, in case of the flexible base, the peak adhesive stresses occurred in the adhesive fillet at the right free end of the horizontal adhesive layer-horizontal support interface for the tensile, compressive, and the right side loading conditions, and in the vertical adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for the left side loading condition. Furthermore, the adhesive stresses showed a nonlinear variation in the direction of the adhesive thickness for all boundary and loading conditions. The left side loading condition, among the present loading conditions, which results in the highest adhesive stresses is the most critical loading condition for both boundary conditions. The effects of horizontal and vertical support lengths on the peak adhesive stresses and on the joint stiffness were also investigated and the appropriate support dimensions relative to the plate thickness were determined based on the stress and stiffness analyses.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.