166
Views
37
CrossRef citations to date
0
Altmetric
Articles

Detachment of rough particles with electrostatic attraction from surfaces in turbulent flows

&
Pages 325-355 | Published online: 02 Apr 2012
 

Abstract

The detachment of particles with coarse and fine roughnesses from surfaces in a turbulent boundary layer flow including electrostatic effects is studied. It is assumed that the real area of contact is determined by elastic deformation of asperities, and the effect of topographic properties of surfaces is included. The Johnson-Kendall-Roberts (JKR) adhesion model is used for analyzing the behavior of individual asperities. For an average Boltzmann charge distribution, the saturation charge condition as well as a fixed charge per unit mass, the Coulomb, the image, the dielectrophoretic, and the polarization forces acting on the particle in the presence of an imposed electric field are evaluated. The theories of rolling and sliding detachment are used to study the onset of removal of bumpy particles and those with fine roughness from plane surfaces. The hydrodynamic forces and torques acting on the particle attached to a wall, along with the adhesion force for the particle, are used in the model development. The minimum critical shear velocities needed to detach particles of different sizes from plane surfaces in the presence of an applied electric field are evaluated and discussed. The electric detachment of the particles is also studied and the field strength needed for particle removal is determined. It is shown that the surface charge distribution significantly affects the removal of particles from surfaces.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.