146
Views
47
CrossRef citations to date
0
Altmetric
Articles

Poly(2-hydroxy ethyl methacrylate)-alkaline phosphatase: A composite biomaterial allowing in vitro studies of bisphosphonates on the mineralization process

Pages 849-868 | Published online: 02 Apr 2012
 

Abstract

We have immobilized the mineralizing agent alkaline phosphatase (AlkP) in a hydrophilic polymer: poly(2-hydroxy ethyl methacrylate) - (pHEMA) - in a copolymerization technique. Histochemical study on polymer sections revealed that AlkP has retained its enzymic activity. The image analysis of sections using a tessellation method showed a lognormal distribution of the area of the tiles surrounding AlkP particles, thus confirming a homogeneous distribution of the enzyme in the polymer. Pellets of pHEMA-AlkP were incubated with a synthetic body fluid containing organic phosphates (β-glycerophosphate). Mineral deposits with a rounded shape (calcospherites) were obtained in about 17 days. We have investigated the effects of three bisphosphonic pharmacological compounds (etidronate, alendronate and tiludronate) on this system which mimics the mineralization process of cartilage and woven bone. Bisphosphonates at a concentration of 10-2 M totally inhibited AlkP in solution at a concentration of 10-4 mg/ml. Inhibition has been reported being due to the chelation of a metal cofactor (Zn2+). Etidronate and alendronate appeared to similarly inhibit the calcospherite deposition onto the pHEMA-AlkP material. Both bisphosphonates possess three sites for the mineral complexion by Ca chemisorbtion. On the other hand, tiludronate having only two sites, was associated with a reduced inhibitory effect on mineralization but larger crystals were obtained. The pHEMA-AlkP material contains an immobilized enzyme in a hydrogel and mimics the physiological conditions of matrix vesicles entrapped within the cartilage(or bone) matrix. It provides an interesting method to study the effects of pharmacological compounds on the mineralization process in bone and cartilage in a non cellular and protein-free model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.