492
Views
80
CrossRef citations to date
0
Altmetric
Regular articles

Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells

, , &
Pages 1-18 | Published online: 02 Apr 2012
 

Abstract

It was reported that cell-adhesive gelatin discs have been successfully used as delivery vehicles for intraocular grafting of bioengineered corneal endothelial cell sheets. Development of alternative biomaterials to bovine-based gelatin vehicles can potentially eliminate the risk of bovine spongiform encephalopathy. In the present work, to investigate whether it was appropriate for use as cell sheet delivery vehicles, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) cross-linked hyaluronic acid (HA) hydrogels were studied by determinations of morphological characteristic, mechanical and thermal property, water content, in vitro degradability and cytocompatibility. Glutaraldehyde (GTA) cross-linked HA samples were used for comparison. It was found that HA discs after cross-linking significantly increased its tensile stress but reduced its tensile strain, water uptake and enzymatic degradability. The results of differential scanning calorimetry demonstrated that cross-linking could lead to the alteration of polymer structure. In addition, the EDC-cross-linked HA discs had a smoother surface structure, a faster degradation rate and a relatively lower cytotoxicity as compared to the GTA cross-linked counterparts. It is concluded that EDC can be successfully applied for HA cross-linking to fabricate structurally stable, mechanically reinforced, readily deformable, transparent and cytocompatible HA hydrogel discs with the potential to be applied as delivery vehicles for corneal endothelial cell therapy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.