178
Views
28
CrossRef citations to date
0
Altmetric
Articles

Physical properties and biocompatibility of cellulose/soy protein isolate membranes coagulated from acetic aqueous solution

, , , , , & show all
Pages 479-496 | Published online: 02 Apr 2012
 

Abstract

A series of cellulose/soy protein isolate (SPI) membranes was prepared from cellulose and SPI solution by casting and coagulation from 5 wt% acetic acid and 5 wt% sulphuric acid aqueous solution, respectively. The structure and properties of the membranes were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and tensile testing. The effects of SPI content (W SPI) and the coagulants on the structure and properties of the membranes were investigated. The membranes exhibited porous structure. The pore size in the surfaces and cross-sections of the membranes increased with an increase of W SPI regardless of the coagulants. The membranes containing 10 wt% W SPI showed higher tensile strength and elongation at break than other membranes. The membranes with the same W SPI coagulated from acetic acid solution exhibited higher values of tensile strength, elongation at break and pore size in the surfaces and cross-sections than those corresponding membranes coagulated from sulphuric acid. The biocompatibility of the acetic acid-coagulated membranes was preliminarily evaluated by cell culture and in vivo implantation experiments. The results revealed that human umbilical vein endothelial cells (ECV304) grew well on this biomaterial. In comparison with the pure cellulose membrane, because of the incorporation of SPI and the resultant alteration of microstructure, the SPI-modified membranes showed an improved in vivo biocompatibility and biodegradability in the implantation experiments. These cellulose/SPI membranes warrant further explorations in biomedical fields.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.