192
Views
1
CrossRef citations to date
0
Altmetric
Articles

A Dynamically Cultured Collagen/Cells-Incorporated Elastic Scaffold for Small-Diameter Vascular Grafts

, , , &
Pages 1807-1820 | Received 08 Apr 2011, Accepted 28 Jul 2011, Published online: 08 May 2012
 

Abstract

There is an essential demand for tissue-engineered autologous small-diameter vascular grafts, which offer temporary supports and guides for vascular tissue organization, repair and remodeling. This study reports on the effect of collagen/smooth muscle cells (SMCs) mixtures under dynamic cultures and SMC-endothelial cell (ECs) co-culture on cell proliferation, uniform cell distribution, extracellular matrix deposition, and endothelial cells monolayer formation in tissue-engineered tubular arterial constructs of 4 mm inner diameter. Rabbit aortic SMCs were infiltrated with collagen solution in poly(L-lactide-co-ϵ-caprolactone) (PLCL) scaffolds under vacuum to form collagenous gel and subjected to dynamic strain by culturing them in a dynamic perfusion bioreactor. The construct lumen was subsequently seeded with ECs and experiments were completed to create ECs–SMCs co-culture constructs. The collagen/SMCs incorporated elastic scaffold cultured under dynamic culture conditions promoted matrix deposition, leading to the development of tissue-engineered vascular constructs, and induced SMC to have more uniform cell distribution. Scanning electron microscopic examination and von Willebrand Factor staining demonstrated the presence of ECs spread over the lumen. Quantitative analysis of elastin contents demonstrated that the engineered vessels acquired similar elastin contents as native arteries. The collagen/SMCs/ECs incorporated PLCL scaffolds under dynamic culture conditions can be used as a scaffold for tissue engineering to facilitate small-diameter vascular-tissue formation.

Acknowledgements

This study was supported in part by a grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare (MOHW) (A050082) and a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (M10641000067).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.