36
Views
11
CrossRef citations to date
0
Altmetric
Articles

Development of a new dynamic method for quantitative evaluation of in vitro hemocompatibility of biomedical materials

, , , &
Pages 285-300 | Published online: 02 Apr 2012
 

Abstract

In this study a new dynamic method is introduced allowing the estimation of blood cell adhesion on flat test surfaces by measuring the cell loss in the bulk phase of surface contacting test blood under defined rheological conditions. This was achieved by constructing a novel test chamber permitting the contact of small amounts of blood with a large geometrical test surface. The construction consists of a spiral-shaped flow channel of 0.3 cm width, 0.02 cm height and 78 cm length covered with the biomaterials to be tested from both sides. Laminarity of blood flow in the conduit was confirmed theoretically by the calculation of an equivalent to the Reynolds number for curved systems the so-called Dean number. Furthermore, flow laminarity was proved experimentally finding that the flow rate of blood with different hematocrit values was proportional to the hydrostatic pressure applied. The applicability of the novel 'spiral method' for the estimation of hemocompatibility was demonstrated by evaluation of platelet adhesion onto different polymers in comparison to siliconized and fibrinogen coated glass as reference surfaces. Additionally, it was possible under distinct conditions to determine the adhesion of leucocytes and the detachment of platelet aggregates. Therefore, it was concluded that the spiral method can be used for the assessment of the hemocompatibility of flat biomedical polymers. As main advantages of the new method can be considered the high time efficiency and accuracy without labelling or optical detection of adherent cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.