96
Views
16
CrossRef citations to date
0
Altmetric
Articles

A triangular-grid finite-difference time-domain method for electromagnetic scattering problems

, , &
Pages 449-470 | Published online: 03 Apr 2012
 

Abstract

A two-dimensional (2-D) finite-difference time-domain (FDTD) method using a triangular grid is introduced for solving electromagnetic scattering problems. The 2-D FDTD method is based on a control region approximation, which is defined by the Dirichlet tessellation of the triangular grid. In general, this discretization scheme is accurate to second-order in time, to first-order in space for non-uniform grids, and to second-order in space for uniform grids. Using triangular grids, arbitrary geometries can be represented by piecewise linear models . In addition, an absorbing boundary condition on a smooth outer boundary, such as a circular boundary, can be implemented. This method is illustrated and verified by calculating scattering from perfectly conducting and coated objects. It is shown that geometrical modeling using a triangular grid is more accurate for electromagnetic scattering problems than those using a rectangular grid, especially when the surface wave is significant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.