104
Views
20
CrossRef citations to date
0
Altmetric
Articles

Effects of LiDAR Data Reduction and Breaklines on the Accuracy of Digital Elevation Model

&
Pages 614-628 | Published online: 19 Jul 2013
 

Abstract

This paper explores the effects of LiDAR data reduction on the accuracies of produced TINs and gridded DEMs. It examined to what extent a set of LiDAR (light detection and ranging) data can be reduced without sacrificing the accuracy of produced terrain model. A primary focus was on the integration of breaklines to the reduction process to assess the contribution of breaklines to improving the accuracy of terrain models in data reduction. A series of TINs and gridded DEMs were produced and assessed at reduced data density levels with and without breaklines respectively. The results showed that LiDAR data can be reduced to a certain level without significantly decreasing the accuracy of produced terrain models. When incorporating breaklines into terrain modelling, the accuracy of produced TINs and gridded DEMs decreased only slightly as data density decreased, indicating that breaklines made a significant contribution to improving the accuracy of terrain models in data reduction.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.