Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 23, 2001 - Issue 2-3: Neurotrauma
37
Views
52
CrossRef citations to date
0
Altmetric
Articles

Acute alterations of endothelin-1 and iNOS expression and control of the brain microcirculation after head trauma

&
Pages 139-143 | Published online: 19 Jul 2013
 

Abstract

The biosynthetic equilibrium between endothelin-1 (ET-1, a vasoconstricting agent) and nitric oxide (NO, a gas with vasodilating effects) is thought to play a role in the autoregulation of microvessel contractility and maintenance of adequate perfusion after traumatic brain injury. ET-1 is a constitutively expressed peptide, while the gene that encodes for the inducible nitric oxide synthase (iNOS, an enzyme responsible for the synthesis of excessive and toxic amounts of NO) is solely activated after brain injury. We employed the Marmarou acceleration impact model of brain injury (400 g from 2 m) to study the effect of closed head trauma on the rat brain microcirculation. Following head trauma we analyzed changes of cerebral cortex perfusion using laser Doppler flowmetry and ultrastructural alterations of endothelial cells. We temporally correlated these changes with the expression of ET-1 (immunocytochemistry) and iNOS ( in situ hybridization) to assess the role of these vasoactive agents in vascular contractility and cortical perfusion. Cortical perfusion was reduced by ~ 50% during the second hour as compared to values during preceding time points after TBI, reached a peak minutes before 3 h, and subsequently showed a trend towards normalization. A significant reduction in the lumen of microvessels and severe distortion of their shape were observed after the fourth hour post-trauma. At the same time period ET-1 expression in endothelial cells was stronger than in microvessels of control animals. ET-1 expression was further increased at 24 h after TBI. iNOS mRNA synthesis was strongly upregulated in the same cells at 4 h but was undetectable at 24 h post trauma. Our combined functional, cellular and molecular approach supports the notion that ET-1 and iNOS are expressed differentially in time within individual endothelial cells of cortical microvessels for the control of cortical blood flow following closed head trauma. This differential expression further indicates a reciprocal interaction in the synthesis of these two molecules which may underlie the control of microvascular autoregulation. [Neurol Res 2001; 23: 139-143]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.