Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 27, 2005 - Issue 8
56
Views
4
CrossRef citations to date
0
Altmetric
Articles

Targeted gene therapy to antigen-presenting cells in the central nervous system using hematopoietic stem cells

, , &
Pages 820-826 | Published online: 19 Jul 2013
 

Abstract

Background: Hematopoietic stem cells (HSC) have been previously used as vectors for gene therapy of systemic disease. The effectiveness of HSC-mediated gene therapy largely depends on efficient gene delivery into long-term repopulating progenitors and targeted transgene expression in an appropriate progeny of the transduced pluripotent HSCs. In the present study, we examined the feasibility of using HSC transduced with self-inactivating (SIN) lentiviral vectors for the delivery of gene therapy to the central nervous system (CNS).

Material and methods: We constructed two SIN lentiviral vectors, EF.GFP and DR.GFP, to express the green fluorescent protein (GFP) gene controlled solely by the promoter of either a housekeeping gene EF-1α or the human HLA-DRα gene, which is selectively expressed in antigen-presenting cells.

Results: We demonstrated that both vectors efficiently transduced human pluripotent CD34+ cells capable of engrafting NOD/SCID mice. Only the DR.GFP vector mediated transgene expression in the murine CNS containing human HLA-DR+ cells. These cells express surface markers characteristic of resident CNS microglia. Furthermore, human dendritic cells derived from transduced and engrafted human cells potently stimulated allogeneic T cell proliferation.

Conclusions: The present study demonstrated successful targeting of transgene expression to CNS microglia after stable gene transduction of pluripotent HSC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.