26
Views
3
CrossRef citations to date
0
Altmetric
Articles

Cavitation erosion resistance of Fe-26Mn-6Si-7Cr-1Cu shape memory alloy

Pages 1733-1736 | Published online: 19 Jul 2013
 

Abstract

The cavitation erosion of low stacking fault energy Fe-26Mn-6Si-7Cr-1Cu shape memory alloy has been investigated in water using an ultrasonic vibratory apparatus, and compared with the behaviour of 0Cr13Ni5Mo stainless steel. It is shown that Fe-26Mn-6Si-7Cr-1Cu alloy has higher cavitation erosion resistance than 0Cr13Ni5Mo stainless steel. The cavitation erosion mechanism of Fe-26Mn-6Si-7Cr-1Cu was studied by examining the eroded surface using X-ray diffraction (XRD) and scanning electron microscopy (SEM). During early stages of cavitation erosion, Fe-26Mn-6Si-7Cr-1Cu alloy undergoes strain induced martensitic transformation. Exposure to further cavitation results in the deformation of ϵ martensite. The boundaries of ϵ martensite impede plastic deformation, leading to strain accumulation and subsequent material removal. On the basis of an XRD study and indentation tests, the better cavitaton erosion resistance of Fe-26Mn-6Si-7Cr-1Cu alloy is mainly ascribed to strain induced martensitic transformation, which can absorb impact energy without damage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.