174
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Studies on influence of reheating temperature and cooling rate on structure–property behaviour of lean chemistry HSLA-100 steel

Pages 1377-1384 | Received 08 Dec 2009, Accepted 09 Mar 2010, Published online: 12 Nov 2013
 

Abstract

Simulation studies on the influence of reheating temperature on austenite grain coarsening in lean chemistry high strength low alloy (HSLA)-100 steel were carried out to establish optimum soaking temperature before hot rolling. Experiments carried out in ‘Gleeble-3500’ dynamic thermomechanical simulator revealed that prior austenite grain sizes varied between 26 and 98 and 34 and 126 μm after soaking at 1150, 1200 and 1250°C for 1 and 5 min respectively; a soaking temperature of 1200°C was found to be optimum. Simulation experiments on the influence of cooling rate on microstructural changes and dilatometric studies indicated lowering of transformation temperature with faster cooling. Microstructural examination of dilatometric samples confirmed martensitic transformation at faster cooling rate. The martensite structure is desirable to achieve better strength and toughness. The findings of simulation studies were subsequently used for standardising thermomechanical treatments of Nb–Cu bearing lean chemistry HSLA-100 steels. One laboratory heat of Cu bearing HSLA steel containing 0·028%Nb was made. This heat was hot rolled into 12·5 mm thick plate by varying finish rolling temperature in the range of 800–1000°C. The soaking temperature was maintained at 1200°C. The rolled plates were heat treated by both conventional reheat quenching and tempering (RQT) as well as direct quenching and tempering (DQT) techniques. Evaluation of mechanical properties revealed that plates processed through DQT route were superior to those processed through RQT route. Transmission electron microscopy revealed that martensite structure and finer interlath spacing in DQT plates resulted in superior strength and impact toughness properties as compared to RQT steels.

The author is grateful to the Management of R&D Centre for encouragement and support in pursuing this work. The assistances provided by Dr V. Kumar for simulation studies, C. B. Sharma for undertaking SEM studies, A. K. Singh for TEM studies and J. Guria for microstructural characterisation merit deep appreciation. The untiring efforts of B. Khalko in meticulous typing of the manuscript and the editing help provided by P.P. Sarkar also deserve sincere thanks.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.