308
Views
11
CrossRef citations to date
0
Altmetric
Literature Review

Reliability of Pb-free solders for harsh environment electronic assemblies

Pages 257-273 | Received 04 May 2011, Accepted 19 Aug 2011, Published online: 12 Nov 2013
 

Abstract

Since 2006 and the implementation of environmental regulations, the electronic industry has moved to Pb-free solders. Harsh environment industries that were exempted from the regulations will soon have to follow suit. However, a suitable replacement solder for use in harsh environments still has to be validated and reliability models are yet to be established. In this review, research that led to the selection of currently used Pb-free alloys and the continuing search for high reliability alloys are described. Sn pest and Sn whiskers, potential major threats for electronics operating in harsh environments, are highlighted. This review also focuses on the microstructure, mechanical properties and deformation mechanisms of Pb-free alloys. Emphasis is placed on Sn–Ag–Cu alloys, now considered to be the alloys of choice for replacement of Sn–Pb solders. The reliability of Pb-free electronic assemblies is studied, focusing on thermal fatigue, believed to be the main source of failure through creep–fatigue mechanisms. The validity of models for Pb-free solder joints life time prediction is assessed and the lack of cohesiveness among the available reliability data is examined.

The author would like to thank Professor P. S. Grant for his support, guidance and encouragement. Financial support from EPSRC is also gratefully acknowledged.

This article is part of the following collections:
Materials Science and Technology Literature Review Prize: 2000-2019 Winners

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.