359
Views
17
CrossRef citations to date
0
Altmetric
Invited Articles

Effect of cyclic loading on subsequent creep behaviour and its implications in creep–fatigue life assessment

Pages 492-501 | Published online: 12 Aug 2015
 

Abstract

Evaluation of creep–fatigue failure is essential in design and fitness evaluation of high-temperature components in power generation plants. Cyclic deformation may alter the creep properties of the material and taking cyclic effects into account may improve the accuracy of creep–fatigue failure life prediction. To evaluate such a possibility, creep tests were conducted on 316FR and modified 9Cr–1Mo steel specimens subjected to prior cyclic loading; their creep deformation and rupture behaviours were compared with those of as-received materials. It was found that creep rupture life and elongation generally decreased following cyclic loading in both materials. In particular, the rupture elongation of 316FR in long-term creep conditions drastically decreases as a result of being cyclically deformed at a large strain range. Use of creep rupture properties after cyclic deformation, instead of those of as-received material, in strain-based and energy-based life estimation approaches brought about a clear improvement of creep–fatigue life prediction.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.