Publication Cover
Redox Report
Communications in Free Radical Research
Volume 13, 2008 - Issue 6
640
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Glutathione synthesis by red blood cells in type 2 diabetes mellitus

, &
Pages 277-282 | Published online: 19 Jul 2013
 

Abstract

Oxidative stress is implicated in the pathogenesis and complications of type 2 diabetes mellitus (NIDDM). Glycoxidation may damage the enzymes that synthesise glutathione (GSH), an endogenous intracellular antioxidant. Erythrocytes (RBCs) taken from NIDDM subjects, and non-diabetic controls, were GSH-depleted using 1-chloro-2,4-dinitrobenzene, incubated in a solution containing GSH-rebuilding substrates, and sampled for GSH using a 5,5′-γ-dithiobis-(2-nitrobenzoic acid)/enzymatic recycling procedure. NIDDM subjects, on average, had the same GSH concentration and synthesising ability as non-diabetic controls, indicating normal function of the synthesis enzymes. A positive correlation between synthesis and concentration of GSH seen in non-diabetic controls did not exist in NIDDM, due to their putatively larger oxidative load. The results, to the best of our knowledge, provide the first evidence that, despite a higher oxidative load, intact RBCs from NIDDM subjects are able to synthesise GSH normally. It is hypothesised that increased rates of GSH synthesis would maintain a normal steady-state GSH concentration.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.