149
Views
7
CrossRef citations to date
0
Altmetric
OriginalArticle

Uncertainty quantification in modelling welding residual stress and distortion

Pages 722-727 | Received 09 Jun 2011, Accepted 23 Aug 2011, Published online: 12 Nov 2013
 

Abstract

Currently available welding simulation methodologies provide deterministic results for the best estimate of the input parameters, such as part geometry, processing conditions and material properties. If there is an uncertainty in any of the input parameters, then a reanalysis needs to be performed with perturbed values of each uncertain variable. However, there can be several hundred input parameters; therefore, the use of reanalysis in uncertainty quantification in welding modelling can be time consuming or computationally prohibitive, especially for three-dimensional modelling. This paper explores the application of design sensitivity analysis in quantifying uncertainty in welding residual stress and distortion computations. Analytic sensitivities are computed by direct differentiation, resulting in a very efficient computational approach. The variation of temperature, welding residual stress and distortion with respect to processing parameters is computed from a first order Taylor expansion of the model output. The approach is demonstrated in a three-dimensional model of a singe pass weld and validated by comparing sensitivity analysis results to reanalyses.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.