159
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

Phase transformation mechanism of low-carbon high strength low alloy steel upon continuous cooling

, , , &
Pages S8-416-S8-422 | Received 03 May 2014, Accepted 23 Jun 2014, Published online: 18 Nov 2015
 

Abstract

The transformation characteristics of low-carbon high strength low alloy steel for various cooling rates were systematically investigated by means of dilatometric measurements and microstructure observations. According to the results, it is recognised that the increase of the cooling rate could lead to microstructure evolution from a mixture of polygonal ferrite, acicular ferrite and bainite ferrite to the dual phase of acicular ferrite and bainite ferrite. The kinetics mechanism of the phase transformation was further studied by a modified analytical phase transformation model, which involves site saturation, diffusion/interface-controlled growth, impingement correction for randomly distributed growing particles. It is demonstrated that diffusion-controlled polygonal ferrite and acicular ferrite phase transformation precedes the interface-controlled bainite ferrite phase transformation. For the diffusion-controlled growth, the transformation is slowed down with the increase of the cooling rate, which prevents the diffusion process to some degree and increases the diffusion activation energy QD. For the interface-controlled growth, the interface migration activation energy shows a declining trend with the increase of cooling rate, thus promoting the transformation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 286.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.