163
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Creep behaviour of Waspaloy under non-constant stress and temperature

, &
Pages 323-326 | Received 12 Feb 2013, Accepted 09 May 2013, Published online: 22 Oct 2013
 

Abstract

Current creep models are derived using data from constant stress (or load) creep tests and are capable of accurately predicting creep behaviour when applied conditions are constant or near constant. However, analyses of creep curve shapes for the nickel based superalloy Waspaloy, when applied stress and/or temperature vary greatly during testing, have shown that predictive methods based purely on strain, time or life fraction are insufficient and cannot predict the observed creep rates. This is important when considering stress concentration features where stress relaxation due to creep can significantly alter the distribution of stress and thus affect fatigue life. When both stress and temperature are changed during a creep test, dislocation movement must proceed through a dislocation network formed under different conditions, resulting in greater than expected creep rates. It is proposed that this is due to a reduction in effective internal stress due to changes in dislocation structure.

Notes

This paper is part of a special issue on Energy Materials

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.