Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 14, 2011 - Issue 4: In Memory of Professor Cintra
133
Views
5
CrossRef citations to date
0
Altmetric
Research articles

Time–place learning is altered by perinatal low-protein malnutrition in the adult rat

, , , , &
Pages 145-150 | Published online: 19 Jul 2013
 

Abstract

Malnutrition produces changes in the central nervous system (CNS) of mammals during development, related to the intensity and timing of the malnutrition insult during the pre- or postnatal period. Protein malnutrition produces irreversible changes in hippocampal formation and some brain stem nuclei. The suprachiasmatic nucleus (SCN) is dramatically altered by low-protein diets during the gestational and perinatal periods. Also, it is known that circadian oscillators regulate physiological, behavioral, and cognitive processes and there is evidence that the time–place learning process exhibits a daily temporal distribution. The aim of this study was to determine the effects of chronic, prenatal, or postnatal malnutrition on daily patterns of the time–place learning process in the adult rat. Forty Sprague–Dawley male 90-day-old rats, were divided into four groups: 10 well nourished controls (Co), 10 chronically (CM), 10 prenatally malnourished (PrM), and 10 postnatally malnourished (PtM) rats. Efficiency in time–place learning was tested by using a behavioral T-maze. Each rat was assayed for 10 trials before considering the final probe of efficiency. Each trial was 60 seconds long, final efficiency was measured by the amount of time the rat took to reach the end of an arm containing a water pot. Each rat was tested in 2-hour spans until completion of a full 24-hour cycle. A Cosinor analysis was used to evaluate acrophase and percentage of rhythmicity. The obtained results suggest that time-place learning process is influenced by the circadian clock. The severity and timing of prenatal or chronic protein malnutrition modifies the acrophase and rhythmicity of the learning circadian pattern, which can impact important cognitive functions.

Acknowledgments

Supported by INB- UR 304, DGAPA IN 201505 and CONACYT 40168-M.

Thanks to Arturo M. Ramírez Pérez and Martín García.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 273.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.