170
Views
5
CrossRef citations to date
0
Altmetric
Research papers

Contact angle measurement on micropatterned surface using sessile drop shape fit profile detection

&
Pages 389-397 | Received 13 Jan 2014, Accepted 08 May 2015, Published online: 16 Jun 2015
 

Abstract

Micro-nano patterned surfaces have significant applications in various fields as they behave differently under the effect of catalysts, magnetic energy, electronic emission/absorption, optics and biological cells. Engineering these topologies demands a better understanding of the contact angle. The current contact angle measurement techniques assume the drop to be a perfect sphere, neglect gravitational and molecular dispersion effects; thereby leading to inaccuracies. This is because the micro-machined surfaces exhibit sub-micrometre scale porosity and pattern dimensions are comparable to the droplet size, resulting in composite interfaces at micro-nano scale. In this paper, the authors assessed the adaptability of conventional measurement techniques for textured surfaces and developed an algorithm that is based on curve fitting over sessile drop after edge detection. The algorithm performs edge detection, contact point identification and curve fitting and corrects uneven surfaces and was tested on micro-patterned surfaces fabricated over three different materials: polydimethylsiloxane, polystyrene and acrylic using laser.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 305.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.