Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 36, 2014 - Issue 7
153
Views
20
CrossRef citations to date
0
Altmetric
Original Research Papers

Reversal of neurobehavioral and neurochemical alterations in STZ-induced diabetic rats by FeTMPyP, a peroxynitrite decomposition catalyst and 1,5-Isoquinolinediol a poly(ADP-ribose) polymerase inhibitor

, &
Pages 619-626 | Published online: 19 Dec 2013
 

Abstract

Objective:

In this study, we have evaluated the involvement of nitrosative stress and poly-ADP ribosyl polymerase (PARP) in diabetes induced neurobehavioral and neurochemical changes using pharmacological agents peroxynitrite decomposition catalyst (FeTMPyP) and a PARP inhibitor (1,5-Isoquinolinediol) in diabetic brains.

Methods:

The extent of neurobehavioral changes was assessed by functional observation battery, motor coordination activity (rota rod performance) and passive avoidance test. Neurochemical changes were assessed by measuring nicotinamide adenine dinucleotide (NAD), malondialdehyde, acetylcholinesterase, neurotransmitters (GABA and glutamate) levels in the hippocampus. GABA and glutamate were measured by high-performance liquid chromatography with electrochemical detection method.

Results:

Two weeks’ treatment with FeTMPyP (3 mg/kg, i.p.) and 1,5-Isoquinolinediol (3 mg/kg, i.p.) improved the cognitive deficits in diabetic rats as observed in passive avoidance test. Both the agents inhibited lipid peroxidation and improves the acetylcholinesterase level in the hippocampus. 1,5-Isoquinolinediol treatment also improves the NAD, neurotransmitter level in the hippocampus.

Discussion:

These results suggest that peroxynitrite decomposition catalyst and PARP inhibitor have beneficial effects in neurobehavioral alterations induced by diabetes. Improvement in neurobehavioral alteration may be attributed to reversal of neurotransmitter homeostasis deficits.

Acknowledgements

The authors would like to thank the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India for financial support. Mr Ashok Kumar Datusalia is a recipient of UGC research fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 421.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.