Publication Cover
Applied Earth Science
Transactions of the Institutions of Mining and Metallurgy: Section B
Volume 122, 2013 - Issue 4
775
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Comparative study of iron ore characterisation using a scanning electron microscope and optical image analysis

, , , , &
Pages 217-229 | Received 26 May 2013, Accepted 31 Mar 2014, Published online: 04 Jun 2014
 

Abstract

In order to develop downstream processing routines for iron ore and to understand the behaviour of the ore during processing, extensive mineralogical characterisation is required. Microscopic analysis of polished sections is effective to determine mineral associations, mineral liberation and grain size distribution. There are two main imaging techniques used for the characterisation of iron ore, i.e. optical image analysis (OIA) and scanning electron microscopy (SEM). In this article, a QEMSCAN system is used as an example of SEM methodology and results obtained from it are compared against results obtained by the CSIRO Recognition3/Mineral3 OIA system. Both OIA and SEM systems have advantages and drawbacks. Even though the latest SEM systems can distinguish between major iron oxides and oxyhydroxides, it is still problematic for SEM systems to distinguish between iron ore minerals very close in oxygen content, e.g. hematite and hydrohematite, or between different types of goethite. Scanning electron microscopy systems also can misidentify minerals with close chemical composition, i.e. hematite as magnetite and vitreous goethite as hematite. In OIA, iron minerals with slight differences in their oxidation or hydration state are more easily and directly recognisable by correlation with their reflectivity. In both methods, the presence of microporosity can result in some misidentification, but in SEM methods misidentifications due to microporosity can be critical. Low resolution during QEMSCAN analysis can significantly affect the textural classification of particle sections. The main conclusion of this study is that, for low iron content ores or tailings, SEM systems can provide much more detailed information on the gangue minerals than OIA. However, for routine characterisation of iron ores with high iron content and containing a variety of iron oxides and oxyhydroxides, OIA is a faster, more cost effective and more reliable method of iron ore characterisation. A combined approach using both techniques will provide the most detailed understanding of iron ore samples being characterised.

Acknowledgements

The authors would like to acknowledge CSIRO Process Science and Engineering for funding this work and wish to thank Tirsha Raynlyn and Abebe Haileslassie for sample preparation. Thanks also go to the reviewers of this paper, in particular Ralph Holmes for valuable discussions and editing of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.