42,190
Views
2,234
CrossRef citations to date
0
Altmetric
Original Article

Laser additive manufacturing of metallic components: materials, processes and mechanisms

, , &
Pages 133-164 | Published online: 12 Nov 2013
 

Abstract

Unlike conventional materials removal methods, additive manufacturing (AM) is based on a novel materials incremental manufacturing philosophy. Additive manufacturing implies layer by layer shaping and consolidation of powder feedstock to arbitrary configurations, normally using a computer controlled laser. The current development focus of AM is to produce complex shaped functional metallic components, including metals, alloys and metal matrix composites (MMCs), to meet demanding requirements from aerospace, defence, automotive and biomedical industries. Laser sintering (LS), laser melting (LM) and laser metal deposition (LMD) are presently regarded as the three most versatile AM processes. Laser based AM processes generally have a complex non-equilibrium physical and chemical metallurgical nature, which is material and process dependent. The influence of material characteristics and processing conditions on metallurgical mechanisms and resultant microstructural and mechanical properties of AM processed components needs to be clarified. The present review initially defines LS/LM/LMD processes and operative consolidation mechanisms for metallic components. Powder materials used for AM, in the categories of pure metal powder, prealloyed powder and multicomponent metals/alloys/MMCs powder, and associated densification mechanisms during AM are addressed. An in depth review is then presented of material and process aspects of AM, including physical aspects of materials for AM and microstructural and mechanical properties of AM processed components. The overall objective is to establish a relationship between material, process, and metallurgical mechanism for laser based AM of metallic components.

One of the authors (D. D. Gu) gratefully appreciates the financial supports from the Alexander von Humboldt Foundation Germany, the National Natural Science Foundation of China (grant nos. 51054001 and 51104090), the Aeronautical Science Foundation of China (grant no. 2010ZE52053), the Natural Science Foundation of Jiangsu Province (grant no. BK2009374), and the NUAA Research Funding (grant no. NS2010156).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.