Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 41, 2014 - Issue 6
358
Views
11
CrossRef citations to date
0
Altmetric
Original Research Paper

Effect of basicity on wüstite sinter reducibility under simulated blast furnace conditions

Pages 418-429 | Received 15 Mar 2013, Accepted 05 Jun 2013, Published online: 06 Dec 2013
 

Abstract

In this study, synthetic sinters with different basicity (CaO/SiO2 = 0, 0·5 and 2·0) were prepared at 1300°C and prereduced at 900°C using low potential reducing gas (LPRG; 20%CO, 20%CO2, 5%H2 and 55%N2). The prereduced sinters were subsequently reduced to metallic iron at 950–1100°C using relatively high potential reducing gas (HPRG; 30%CO, 5%CO2, 10%H2 and 55%N2). Both LPRG and HPRG were selected to simulate the gas composition in the blast furnace upper and lower shaft respectively. High pressure mercury porosimeter, X-ray phase analysis, optical and scanning electron microscope were used for the analysis of the prepared and reduced sinters. In the original basic sinter, calcium ferrite (CaFe2O4) and dicalcium silicate (Ca2SiO4) phases were identified as well as the main Fe2O3 phase, whereas wollastonite [Ca2·87Fe0·13(SiO3)3] and silica (SiO2) were formed in the acidic sinter. The prereduction in sinters with LPRG at 900°C resulted in the formation of wüstite (Fe0·902O) phase. The subsequent reduction in wüstite sinters to metallic iron using HPRG at 950–1100°C was found to be the highest for basic sinter and the least for acidic sinter. The higher reduction rate of basic sinter was attributed to the enhancement of wüstite reducibility through the formation of calcium ferrites. The lower reduction rate of wüstite in acidic sinter was attributed to the formation of hard reducible fayalite (Fe2SiO4) and ferrobustamite [(Ca0·5Fe0·5)SiO3] phases. The rate controlling mechanism during the reduction process was estimated by the correlation between apparent activation energy calculation and microstructure investigations.

Acknowledgements

The author would like to express deep thanks and gratitude to Professor Dr A. A. El-Geassy and Associate Professor M. Bahgat, Pyrometallurgy Department, CMRDI, for their interest and continuous discussion throughout this work.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.