498
Views
14
CrossRef citations to date
0
Altmetric
Articles

Bryophyte photosynthesis in sunflecks: greater relative induction rate than in tracheophytes

, &
Pages 110-117 | Published online: 03 Apr 2014
 

Abstract

Photosynthetic kinetics in changing light intensity is considered pivotal for the survival of understorey tracheophytes; however, it is virtually unknown for bryophytes because bryophytes and tracheophytes have contrasting physio-ecological strategies. Anatomy suggests that relative rate of photosynthetic induction is faster in bryophyte gametophytes due to the absence of stomata, whose slow response may limit photosynthesis of tracheophyte leaves in changing light intensity. We measured steady-state and dynamic CO2 exchange in 10 bryophyte species. We performed an in-depth survey of the moss Hypnum cupressiforme sampled from sun and shade sites. Our key results are: (1) Bryophyte photosynthesis after dark acclimatisation induced much faster than in tracheophytes, reaching 50% of maximum gross photosynthesis (Agross) in about 90 s. Such rapid induction is comparable only to tracheophytes whose stomata do not limit CO2 uptake. Times to reach 90% of Agross were also substantially shorter in bryophytes (ca 220 s) than those reported for most tracheophytes (500–2000 s). (2) Shade-grown mosses did not reveal lower photosynthetic capacity than sun ones. (3) Shade-grown H. cupressiforme induced photosynthesis slightly faster than that from forest gaps. We conclude that bryophytes are efficient utilizers of temporal light heterogeneity, increasing carbon gain during short high-light events such as sunflecks in forest understorey.

Acknowledgements

This work was supported by long-term research development projects nos. MSM6007665801 and RVO 67985939. We are indebted to Daniel Vrábl for calculation of diffusive conductances for CO2. JK is indebted to Přemysl Fuksa for manufacturing the customized stainless-steel gas-exchange chamber.

Taxonomic Additions and Changes: Nil.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 448.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.