102
Views
19
CrossRef citations to date
0
Altmetric
Articles

Phase transformation during aging and resulting mechanical properties of two Ti–Nb–Ta–Zr alloys

Pages 678-686 | Published online: 19 Jul 2013
 

Abstract

Phase transformations and mechanical properties of both Ti–29Nb–13Ta–4·6Zr and Ti–39Nb–13Ta–4·6Zr (wt–%) alloys were investigated. The microstructure of the 29Nb alloy is sensitive to solution and aging treatment. Ice water quenching from the solution treatment temperature resulted in (β+α") microstructure but air or furnace cooling led to a mixture of (β+ω). The formation of the orthorhombic α" martensite thus suppresses ω formation in the ice water quenched 29Nb alloy. Cooling rate from the solution treatment temperature also has a significant effect on the formation of α and ω phases during subsequent isothermal aging below the ω start temperature: slow cooling enhances ω but depresses α formation. This cooling rate dependence of aged microstructure was attributed to α" martensite acting as precursor of the α phase, thus providing a low energy path to the precipitation of a at the expense of ω. Phase transformation in the 39Nb alloy is more sluggish than that in the 29Nb alloy, owing to the presence of the higher content of β stabiliser Nb. For the 29Nb alloy, Young's modulus and mechanical properties are sensitive to the fraction of phases, and change significantly during aging, in contrast with the 39Nb alloy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.