74
Views
28
CrossRef citations to date
0
Altmetric
Articles

Transient liquid phase bonding of magnesium alloy (Mg – 3Al – 1Zn) using copper interlayer

, &
Pages 1595-1598 | Published online: 20 Nov 2013
 

Abstract

The mechanism, microstructure and mechanical properties of transient liquid phase (TLP) bonded magnesium alloy (Mg – 3Al – 1Zn) joints using copper interlayers in an argon atmosphere have been investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid state diffusion, dissolution of the interlayer and base metal, isothermal solidification and homogenisation. The composition profiles and microstructures of the joint depend on the bonding time at a temperature of 530°C. With an increase in bonding time from 10 to 60 min, the concentration of copper and the amount of CuMg2 compound in the joint decrease. For longer bonding times, the most pronounced features of the joint are composition homogenisation, grain coarsening and elimination of the bond line within the joint centre. The presence of brittle CuMg2 and grain coarsening of the joint are the main reasons for impairing the joint shear strength. A joint shear strength of 70.2 MPa, which is 85.2% of the base metal strength (82.4 MPa), can be achieved by bonding at 530°C for 30 min.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.