213
Views
16
CrossRef citations to date
0
Altmetric
Original Research Papers

Analysis of indentation size effect in copper and its alloys

, , , , , & show all
Pages 868-876 | Received 03 Dec 2012, Accepted 21 Jan 2013, Published online: 18 Nov 2013
 

Abstract

For describing the indentation size effect (ISE), numerous models, which relate the load or hardness to the indent dimensions, have been proposed. Unfortunately, it is still difficult to associate the different parameters involved in such relationships with physical or mechanical properties of the material. This is an unsolved problem since the ISE can be associated with various causes such as workhardening, roughness, piling-up, sinking-in, indenter tip geometry, surface energy, varying composition and crystal anisotropy. For interpreting the change in hardness with indent size, an original approach is proposed on the basis of composite hardness modelling together with the use of a simple model, which allows the determination of the hardness–depth profile. Applied to copper and copper alloys, it is shown that it is possible to determine the maximum hardness value reached at the outer surface of the material and the distance over which both the ISE and the workhardening take place.

Professor Puchi-Cabrera gratefully acknowledges the financial support of the Conseil Régional Nord-Pas de Calais, France, through the International Chair program 2011.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.