Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 108, 2009 - Issue 3
27
Views
5
CrossRef citations to date
0
Altmetric
Articles

Influence of nano–micrometre powder blends on microstructure and mechanical properties of silicon nitride

, , , , , & show all
Pages 167-173 | Published online: 18 Jul 2013
 

Abstract

A well known route to making tough silicon nitride compositions is to control the grain size and aspect ratio distributions. This is usually done by choosing the appropriate powder characteristics, sintering conditions, as well as sintering additives. The effect of hot pressing a blend of nano and micrometre scale silicon nitride powder is explored here. Microstructures and mechanical properties are determined for these hot pressed ceramics and are compared with a reference silicon nitride. Hardness and fracture toughness are determined at room temperature using hardness indents produced by a macro Vickers hardness indenter. Grain size and aspect ratio distributions and their impact on mechanical properties are presented. Blending of nano and micrometre scale powder is shown to result in a refined microstructure with an increase in the area/volume fraction of finer grains. Rising R curves are established for these ceramics demonstrating toughening behaviour. Crack bridging and crack path deviation are identified as possible toughening mechanisms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.