Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 110, 2011 - Issue 5
771
Views
71
CrossRef citations to date
0
Altmetric
Review or critical assessment

Nanosize hydroxyapatite: doping with various ions

&
Pages 311-321 | Received 20 May 2010, Accepted 02 Oct 2010, Published online: 22 Nov 2013
 

Abstract

Abstract

Natural crystal sizes of bone minerals are present in the nanoscale regime (specifically less than 100 nm in at least one direction). Therefore, research on the synthesis and characterisation of nanosize hydroxyapatite has gained significant importance in numerous biomedical applications. This is because currently used pure micrometre sized hydroxyapatite has poor mechanical properties, which limits it use in non-load bearing applications. For these reasons, various ions could be easily substituted into nanostructured hydroxyapatite to alter its biocompatibility, sinterability and mechanical properties. In this study, the synthesis methods, biocompatibility, physical, microstructural and nanostructural characteristics of nanocrystalline hydroxyapatite are reviewed. Compared to pure micrometre structured hydroxyapatite, numerous properties (most notably, biocompatibility properties pertinent for orthopedic applications) are improved for nanostructured hydroxyapatite doped with various ions. Such studies demonstrated that the mechanical properties and phase stability of nanohydroxyapatite doped with various ions after sintering at high temperatures should be investigated in more detail.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.