50
Views
6
CrossRef citations to date
0
Altmetric
Articles

Hybrid forming processes for production of lightweight high strength automotive panel parts

, , &
Pages 160-165 | Published online: 18 Jul 2013
 

Abstract

The research concentrates on a heat treatable AA 6082 aluminium alloy. A set of unified constitutive equations has been developed and determined from experimental data. In addition to modelling viscoplastic flow of the material at different temperatures, the equations contain other two specific features. One is to predict the failure of the material under various deformation conditions based on continuum damage mechanics theories. The other is to model the precipitation formation and growth under straining and aging conditions; thus, the strength distribution of formed parts can be predicted via process modelling. The determined unified constitutive equations are then implemented into the commercial finite element code ABAQUS/Explicit via the user defined subroutine, VUMAT. A finite element process simulation model and numerical procedures are established for the modelling of a hot stamping and cold die quenching processes for a spherical part with a central hole. To validate the simulation results, a test programme is developed, a test rig has been designed and manufactured and tests have been carried out under different forming rates. It has been found that very close agreements between experimental and numerical process simulation results are obtained for the range of forming rates carried out.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.