Publication Cover
Cochlear Implants International
An Interdisciplinary Journal for Implantable Hearing Devices
Volume 15, 2014 - Issue 6
157
Views
5
CrossRef citations to date
0
Altmetric
Original research papers

Modelling the effects of cochlear implant current focusing

, &
Pages 318-326 | Published online: 12 Aug 2014
 

Abstract

Objectives

A finite element model of the human coiled cochlea was used to model the voltage distribution due to stimulation by the individual electrodes of a cochlear implant. The scalar position of the electrode array was also varied in order to investigate its effect on the voltage distribution. Multi-electrode current focusing methods were then investigated, with the aim of increasing spatial selectivity.

Methods

Simultaneous current focusing is initially achieved, as in previous publications, by calculating the input currents to the 22 electrodes that best separates the voltages at these electrode positions. The benefits of this electrode focusing strategy do not, however, entirely carry over to the predicted voltage distributions at the position of the spiral ganglion cells, where excitation is believed to occur. A novel focusing strategy is then simulated, which compensates for the impedances between the currents at the electrode sites and the voltage distribution directly at the position of the spiral ganglion cells.

Results

The new strategy produces much better focusing at the sites of the spiral ganglion cells, as expected, but at the cost of increased current requirements. Regularization was introduced in order to reduce current requirements, which also reduced the sensitivity of the solution to uncertainties in the impedance matrix, so that improved focusing was achieved with similar current requirements to that of electrode focusing.

Discussion

Although such focusing strategies cannot be achieved in practice at the moment, since the responses from the electrodes to the neural sites cannot be determined with currently available recording methods, these results do support the feasibility of a more effective focusing strategy, which may provide improved spectral resolution leading to improved perception of sound.

Acknowledgements

This work was sponsored by a Rayleigh Scholarship from the Institute of Sound and Vibration Research at the University of Southampton.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 380.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.