243
Views
6
CrossRef citations to date
0
Altmetric
Original Research Papers

Temperature and strain rate effect on tensile properties of 9Cr–1·8W–0·5Mo–VNb steel

, , , &
Pages 377-383 | Received 16 Jun 2014, Accepted 04 Aug 2014, Published online: 01 Oct 2014
 

Abstract

Tensile tests have been carried out on 9Cr–1·8W–0·5Mo–VNb steel (grade 92) over wide ranges of temperature (300–923 K) and strain rate (3×10−3–3×10−5 s−1). The tensile strength of the steel decreased slowly with temperature at relatively lower temperature range, whereas rapidly in the higher temperature range with a plateau in the intermediate temperature range. The decrease in strain rate decreased the tensile strength of the steel both at lower and higher temperature ranges. Elongation to fracture and reduction in area increased with increase in temperatures and decrease in strain rate at higher temperature regime with a plateau in the intermediate temperature regime. The ductile mode of tensile failure has been observed in the investigated temperatures and strain rates. The plateau in the variation of tensile strength with temperature, the negative strain rate sensitivity of tensile strength and minimum in ductility of the steel in the intermediate temperature range are considered as a consequence of dynamic strain ageing. The rapid decrease in tensile strengths and increase in ductility at high temperatures have been attributed to the dynamic recovery.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.