6
Views
2
CrossRef citations to date
0
Altmetric
Articles

Creep of Pb–2·5Sb–0·2Sn alloy at low stresses

Pages 504-509 | Published online: 18 Jul 2013
 

Abstract

The creep of a Pb–2·5Sb–0·2Sn alloy has been studied at stresses up to 6·5 MN m−2 in the temperature range 318–348 K (0·53–0·58Tm) using helical specimens. At 333 K, a transition in the stress exponent from ~1 to 3 occurred at ~3 MN m−2. The observed good agreements below the transition stress, both for experimental dE/do and predictions for Coble diffusional creep of lead, and for measured activation energy for creep and the activation energy for grain boundary self-diffusion in lead, suggest that grain boundary diffusional creep is the dominant mechanism. at low stresses. The presence of antimony does not seem to affect the magnitude of dE/do appreciably, and the results suggest that the grain boundary self-diffusivity of lead is not influenced by the presence of segregated antimony on the grain boundaries. The diffusional creep occurred above a threshold stress of magnitude ~0·5 MN m−2, and its temperature dependence was characterised by an activation energy of ~20 kJ mol−1, similar to the value of 23 ± 7 kJ mol−1 typical of pure metals in the temperature range investigated. The stress exponent of ~3 observed for the power law regime suggests control by viscous glide of dislocations constrained by dragging of solute atmospheres. Preliminary tests on sagging beam specimens of as-worked material at an applied stress of 2·5 MN m−2 and a test temperature of 333 K has provided the first direct evidence that anisotropic grain shape affects Coble creep. The specimen with the longest grain dimension along the stress axis underwent slower creep than the specimen with the longest grain dimension perpendicular to the stress axis. This observation is in qualitative agreement with theoretical predictions.

MST/1139

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.